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1. Introduction

Models with fermions in bifundamental representations of product gauge groups of the

general form SU(a) × SU(b) × SU(c) have been studied for a variety of reasons over the

last three decades [1]. The fermions must be free of gauge anomalies. The relevant gauge

anomalies here are SU(a)3, SU(b)3 and SU(c)3 (unless either a, b or c =2). So if the

fermions are composed solely of bifundamental representations, they must be of the form

1

d
[c(a, b̄, 1) ⊕ a(1, b, c̄) ⊕ b(ā, 1, c)] (1.1)

or a multiple thereof. Here, d is the lowest common divisor of a, b and c. A simple example

is the Trinification (TR) model [2] where a = b = c = d = 3 and a single anomaly family

lives in the bifundamental representations RTR = (3, 3̄, 1)⊕ (1, 3, 3̄)⊕ (3̄, 1, 3) of the gauge

group GTR = SU(3)×SU(3)×SU(3). Another example is the Pati-Salam (PS) model where

the gauge group is GPS = SU(4) × SU(2) × SU(2) [3] and the fermions representations are

RPS = (4, 2, 1)⊕(4̄, 1, 2). This is an exception to the above general remarks since we do not

need to include (1, 2, 2̄) because there are no SU(2)3 gauge anomalies. This only happens

when the gauge group contains SU(2) subfactors. We still have SU(2) global anomalies to

worry about, but there are an even number of doublets, and so, the model is consistent.

In [4] we introduced a model based on the gauge group SU(4) × SU(3) × SU(3) (the

334-model). It is the minimal model that contains both the (PS) model and the (TR)

model. The 334-model contains features that are not present in many grand unified models.

These include fractionally charged color singlet states and light magnetic monopoles. The

richness of possible charge assignments were not explored in [4], but here we begin a more

comprehensive analysis.

If string theory is to be the ultimate physical theory, then we must be able to extract

standard model (SM) physics from it. A number of attempts with this objective have

been pursued, including Calabi-Yau compactifications of the heterotic string, which yield

E6 type GUT theories, where holomorphic deformations, Wilson loops, etc., can be used

to reduce the gauge symmetry. Orbifolding of type IIB strings on AdS5 × S5 can pro-

duce four dimensional conformal field theories (CFT s) with gauge groups
∏

i SU(Ndi) and

bifundamental matter [5, 6] and hence resemble the standard model. This is part of our

motivation for studying the 334 model.

Here we again [4] take a bottom-up approach and consider models that are likely to

be derivable from orbifolded type IIB strings, but our focus will be the resulting phe-

nomenology, not on a string theory derivation of the model. The models we study contains

aspects of both Calabi-Yau and AdS/CFT type string theory compactifications, and leads

to a remarkably rich set of phenomenologies. It is well known that the (PS) model and the

(TR) model are both contained in E6 Grand Unification [7, 8]. We will provide additional

coverings of PS and TR which do not embed in E6, but instead require nontrivial family

unification and are perhaps the minimal such example of models with this property. We

conclude this section with a brief review of PS and TR models. In the following sections,

we present our models and then consider some of their phenomenological consequences.
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The gauge group of the PS model is GPS = SU(4) × SU(2)L × SU(2)R. Each fermion

family lives in a set of bifundamental representation

(4, 2, 1) ⊕ (4̄, 1, 2). (1.2)

This model embeds naturally in SO(10) (as GPS/Z2), where a fermion family combines

into a 16 of SO(10). Adding a 10 ⊕ 1 of fermions then allows unification into E6, where

the fermions are now in a 27. The PS, SO(10), and E6 models are all chiral and anomaly

free, family by family, and so a full three-family [9] model is gotten simply by replicating

the first family.

The TR model also has fermions in bifundamental representations

(3, 3̄, 1) ⊕ (3̄, 1, 3) ⊕ (1, 3, 3̄) (1.3)

where now the gauge group is GTR = SU(3) × SU(3) × SU(3). As GTR/Z3 is a subgroup

of E6 and (3) already contains 27 fermionic states, the unification into E6 is gotten sim-

ply by adding the necessary gauge generators to extend SU(3)3 to E6. Again, a single

fermion family is anomaly free on its own, so we must add two more families to agree with

phenomenology.

2. Review of the SU(4) × SU(3) × SU(3) model

The smallest group that contains both the PS and TR models is not E6 but G = SU(4) ×
SU(3) × SU(3), which has 31 generators and has a rank of 7. Insisting on fermions in

bifundamental representations, we consider (4, 3̄, 1), (4̄, 1, 3), and (1, 3, 3̄). We cannot take

one of each to form a family, since this would be anomalous. The minimal anomaly free

choice is [4].

3(4, 3̄, 1) ⊕ 3(4̄, 1, 3) ⊕ 4(1, 3, 3̄). (2.1)

If we break the SU(4) to SU(3), then (4) becomes

3[(3, 3̄, 1) ⊕ (3̄, 1, 3) ⊕ (1, 3, 3̄)] ⊕ (1, 3̄, 1) ⊕ (1, 1, 3) ⊕ (1, 3, 3̄) (2.2)

which contains three TR families plus a few additional particles. Hence the simplest set of

anomaly free chiral bilinear representation [i.e., (4)] contains three families. This is a true

family unification, instead of a model where the second and third families are gotten from

merely replicating the first. Examples of the latter include minimal SU(5), SO(10) with

fermionic 16s, and E6 grand unification with fermions in 27s, in addition to the PS and

TR models.

The full analysis of the 334-model [10] requires the study of all the various patterns

of spontaneous symmetry breaking (SSB), and the charge assignments these lead to, plus

the phenomenological implication of the “extra” fermions. Typically there exist fractional

charged color singlets [11, 12] in these models, and hence the minimal monopole change

will be the inverse of this minimal fraction times the Dirac charge.

As we shall see, there are only three inequivalent possibilities for embedding color and

weak isospin of the standard model in SU(4) × SU(3) × SU(3) (if we ignore the diagonal
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subgroups). The embedding of weak hypercharge is more complicated. Consider the break-

ing SU(4) × SU(3)A × SU(3)B → SU(4) × SU(2)L×U(1)A

Z2
× SU(2)R×U(1)B

Z2
. If we then break

U(1)A and U(1)B completely, the hypercharge must be Y = T3R + (B − L), where T3R

is the diagonal generator of SU(2)R, and B − L generates the U(1) that is in SU(4) but

not in SU(3)C . However, there are many other possibilities for the embedding of U(1)Y .

These are similar to the well-known flipped models [13, 14]. One obvious choice is to break

SU(4) to SU(3)C and then Y could be the trinification choice from SU(3)L×SU(3)R. Trini-

fication has a standard hypercharge assignment, but this could be flipped. Also moving

SU(2)W from SU(4) to an SU(3) of the 334-model corresponds to an isoflipped model [15].

(There are even more choices where family members move around and the charges of the

extra fermions change. These“transflipped” models will be described in the next section.)

Here we restrict ourselves to the standard hypercharge embeddings that generate PS and

TR models, but keep in mind that flipping may offer other opportunities. (Note, embed-

ding SU(3)C and/or SU(2)W in some diagonal subgroup within the 334-model, and this

includes the “diagonal embedding” SU(2)W = SU(2)diag ⊂ SU(2) × SU(2) ⊂ SU(4), leads

to vectorlike fermions, and this route is incompatible with SM phenomenology.)

We now begin our review of the most straightforward embedding followed in [4] which

leads to the TR and PS models. In the next section we give a general analysis of all

embeddings where the patterns of spontaneous symmetry breaking can be consistent with

SM phenomenology.

The standard PS version of the 334-model, has fermions

3[(4, 2̄, 1)⊕ (4, 1̄, 1)]⊕ 3[(4̄, 1, 2)⊕ (4̄, 1, 1)]⊕ 4[(1, 2, 2̄)⊕ (1, 2, 1)⊕ (1, 1, 2̄)⊕ (1, 1, 1)] (2.3)

Only the three PS families remain chiral, while the extra (exotic) vectorlike fermions obtain

masses from Higgs VEVs at the G breaking scale. This will be discussed in more detail

in the section on the Higgs sector. Breaking GPS to the standard model gauge group

GSM = SU(3)C×SU(2)W ×U(1)Y

Z3
, we find

3[(3, 2) 1

6

+ (1, 2)− 1

2

+ (3, 1) 1

6

+ (1, 1)− 1

2

]

+3[(3̄, 1) 1

3

+ (3̄, 1)− 2

3

+ (1, 1)1 + (1, 1)0 + (3̄, 1)− 1

6

+ (1, 1) 1

2

]

+4[(1, 2)− 1

2

+ (1, 2) 1

2

+ (1, 2)0 + (1, 1)− 1

2

+ (1, 1) 1

2

+ (1, 1)0.]

As expected, we are left with three standard model families, plus three right-handed neu-

trinos, needed to form the three PS families, plus the following extra fermion states:

3[(3, 1) 1

6

+ (3̄, 1)− 1

6

] + 4[(1, 2) 1

2

+ (1, 2)− 1

2

] + 7[(1, 1) 1

2

+ (1, 1)− 1

2

] + 4(1, 2)0 + 4(1, 1)0.

Electric charge is now quantized in units of 1
2 , so the magnetic monopole must have a

minimum charge of two from the Dirac quantization condition.

Care must be taken with the direct route to the TR model. This is due to a subtlety

that arises in breaking SU(4) to SU(3). With the standard trinification charge assignments,

one finds that massless charged quarks and leptons appear in the spectrum– a conflict with

phenomenology. To avoid this we must include additional fermion multiplets at the 334
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level. Let us see how this works. Two inequivalent cases must be considered: (i) SU(3)C
embedded in SU(4), or (ii) SU(3)C identified with an SU(3) of the 334-model. In both

cases at the trinification level we begin with fermions as in (4).

For case (i), we have the three standard families plus

RE = 3(1, 3̄, 1) ⊕ 3(1, 1, 3) ⊕ (1, 3, 3̄) (2.4)

under SU(3)C × SU(3)L × SU(3)R. Hence all the extra states are leptonic. Then for

SU(3)L × SU(3)R → SU(2)L×U(1)L

Z2
× U(1)R where we identify U(1)R with the diagonal

generator YR = diag(1, 1,−2) of SU(3)R and likewise U(1)L with the generator YL =

diag(1, 1,−2) of SU(3)L, we can choose the hypercharge to be Y = 1
6YL + 1

3YR. The

families just have the standard 27 of E6 charges, while the new leptons are

5(1, 2)− 1

6

+ (1, 2) 5

6

+ 10(1, 1) 1

3

+ 5(1, 1)− 2

3

(2.5)

These states are still chiral, and the only way to give them mass would be with a VEV

from an electrically charged Higgs. As this must obviously be avoided, an alternative, if we

relax our restriction on only having bifundamental fermions, is to arrange these particles

to be vectorlike by adding the conjugate, but anomaly free chiral multiplets

R̄E = 3(1, 3, 1) + 3(1, 1, 3̄) + (1, 3̄, 3) (2.6)

at the 334 level. But this particular combination of RE and R̄E contains the vectorlike

pair of bifundamentals (1, 3, 3̄) ⊕ (1, 3̄, 3) which is also anomaly free since it is vectorlike.

Barring any additional symmetry or some other mechanism, we would expect this pair to

acquire a mass much higher than the 334 breaking scale, which will effectively lead to its

decoupling. This is possible because there is a smaller anomaly free combination (since we

now have fundamentals in addition to bifundamentals).

3(4, 3̄, 1) ⊕ 3(4̄, 1, 3) ⊕ 3(1, 3, 3̄) ⊕ 3(1, 3, 1) ⊕ 3(1, 1, 3̄) (2.7)

But this is none other than three copies of the anomaly free combination:

(4, 3̄, 1) ⊕ (4̄, 1, 3) ⊕ (1, 3, 3̄) ⊕ (1, 3, 1) ⊕ (1, 1, 3̄) (2.8)

Unfortunately, this means that the case where 334 breaks down via TR does not explain

why there are three families.

Now, with fermions as in (2.7), upon breaking G → GTR at some high scale 〈φ〉, the

chiral families stay massless while the extra fermions acquire mass terms of the form h〈φ〉
R̄ERE , where h is a typical Yukawa coupling constant. Hence, the fractionally charged

leptons become heavy compared to the family fermions. Let us summarize the extra vec-

torlike leptons. There are five doublets with electric charges ±1
3 and ∓2

3 , two doublets

with electric charge ±1
3 and ±4

3 , ten singlets with ±1
3 charges, and five singlets with ∓2

3

charges. The minimal monopole charge is three.

For case (ii), some of the extra states will be colored. In terms of SUC(3) × SUL(3)×
SUR(3), they are

SE = 3(3, 1, 1) + 3(1, 1, 3̄) + (3̄, 1, 3). (2.9)
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The hypercharge in unchanged from case (1) (it is still Y = 1
6YL + 1

3YR), so now we find:

SE = 3(3, 1)0 + 3(1, 2)− 1

3

+ 3(1, 1) 2

3

+ (3̄, 2) 1

3

+ (3̄, 1)− 2

3

. (2.10)

Again we must add conjugate states

S̄E = 3(3̄, 1, 1) + 3(1, 1, 3) + (3, 1, 3̄), (2.11)

and this allows masses for the exotics at a scale higher than the family masses.

A point worth emphasizing is that unwanted Goldstone bosons do not appear when

masses are given to the exotic fermions in the 334 model. First recall that Goldstone bosons

arise when a generator of a symmetry of the lagrangian is broken. (There is one Goldstone

for every generator the does not preserve the vacuum.) If these are gauge generators, the

Goldstone is eaten via the higgs mechanism, otherwise it is a true Goldstone (massless

scalar) that remains in the low energy spectrum. One further point worth recalling is that

if there is a symmetry G∗ of the Higgs potential V that is larger than the gauge group

G (i.e., when G is a subgroup of G∗) then breaking a generator of G∗ that is not in G

results in a pseudo-Goldstone boson (PGB). Usually G∗ = G, but G∗ can be larger than

G due to an accidental symmetry, or to an additional symmetry that can be imposed on

V . A classic example is an SU(3) gauge theory with a single adjoint φ. The generic Higgs

potential is only SU(3) invariant, but if one imposes a Z2 symmetry φ → −φ, the cubic

term in V is eliminated and the Higgs potential becomes SO(8) invariant. A V EV in the

λ8 component of φ then results in the gauge symmetry breaking to SU(2)×U(1) with four

Goldstones being eaten. From the SO(8) point of view, seven generators are broken, four

correspond to those eaten by the Higgs mechanism, while the other three are massless at

tree level, but these pseudo-Goldstones get masses at the one loop level. The remaining

scalar state is heavy at tree level like a standard Higgs particle.

Any true Goldstones are always eaten in any spontaneously broken gauge theories

where the symmetry of the full lagrangian is just the gauge symmetry G. If the Higgs

potential has a higher symmetry (either imposed or accidental), then PGBs can arise, but

they always get masses through loop corrections. PGBs are the exception rather than

the rule, especially in models with complicated Higgs potentials like the ones we will be

considering. We will always have multiple Higgs representations in our models, and so there

will typically be cross terms, cubic terms, etc. that leave no room for symmetry beyond G.

So to conclude, upon SSB, all Higgs fields are either eaten by the Higgs mechanism, or are

heavy with mass on the order of the V EV . On the rare occasion when V has a accidental

symmetry, the PGBs that arise would develop masses, typically at one loop.

With this review under our belt we are now ready to survey the complete list of allowed

patterns of spontaneous symmetry breaking for the 334 model that lead to standard model

physics plus extended families of fermions. As there are alternative hypercharge and weak

isospin assignments (the flipped and isoflipped models) in SO(10) and E6, so there are

alternative embeddings of hypercharge and weak isospin in SU(4)× SU(3)L × SU(3)R that

are not the same as the PS or TR assignments discussed above. Recall that we will call

these alternative hypercharge and weak isospin assignments “transflipped 334 models.” In
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this case the flipping rearranges the location of the family members while keeping their

charges fixed, but the extra fermions change both their location and charge. This is more

general than the behavior of flipping in SO(10) or E6 where rearrangement takes place,

but charges of extra fermions remain fixed.

3. Classification of inequivalent 334-models

There are three inequivalent ways to embed SU(3)C and SU(2)W in SU(4) × SU(3)L ×
SU(3)R that can lead to the correct fermion families in the standard model group SU(3)C ×
SU(2)W × U(1)Y .

(i) Embed SU(3)C in SU(4) and SU(2)W in either SU(3)L or SU(3)R.

(ii) Identify SU(3)C with SU(3)L and embed SU(2)W in SU(3)R (or vice versa).

(iii) Identify SU(3)C with either SU(3)L or SU(3)R and let SU(2)W ⊂ SU(4).

In all cases the fermion representations at the 334 unification scale are

3(4, 3̄, 1)⊕3(4̄, 1, 3)⊕4(1, 3, 3̄), but in some circumstances it may be necessary to include ad-

ditional fundamental or bifundamental representations to avoid unwanted massless charged

particles.

In case (i) the initial SU(4) contains a diagonal generator Λ15 = 1√
6
diag(1, 1, 1,−3)

orthogonal to SU(3)C [16].

With SU(2)W in SU(3)L we have another commuting generator λL
8 = 1√

3
diag(1, 1,−2),

and there are two more diagonal U(1) generators λL
3 = diag(1,−1, 0) and λR

8 =
1√
3
diag(1, 1,−2) in SU(3)R. We now require the weak hypercharge U(1)Y be generated

by a linear combination of Λ15, λL
8 , λR

3 and λR
8 such that we arrive at three families plus

additional states. We can proceed systematically by following the decomposition of the

fermion bifundamentals for

SU(4)×SU(3)L×SU(3)R → SU(3)C×U(1)Λ15
×SU(2)W ×U(1)λL

8

×U(1)λR
3

×U(1)λR
8

to find

(4, 3̄, 1) → (3, 2̄, 1)1−100 + (1, 2̄, 1)−3−100 + (3, 1, 1)1200 + (1, 1, 1)−3200 (3.1)

(1, 3, 3̄) → (1, 2, 1)01−1−1 + (1, 2, 1)011−1 + (1, 2, 1)0102

+(1, 1, 1)0−2−1−1 + (1, 1, 1)0−21−1 + (1, 1, 1)0−202 (3.2)

(4̄, 1, 3) → (3̄, 1, 1)−1011 + (3̄, 1, 1)−10−11 + (3̄, 1, 1)−100−2

+(1, 1, 1)3011 + (1, 1, 1)30−11 + (1, 1, 1)300−2 (3.3)

We now must solve for the generator of U(1)Y . We do this by solving for the coefficients

in

Y = aΛ15 + bλL
8 + cλR

3 + dλR
8 (3.4)
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a b c d type

0 −1/6 -1/2 -1/6 TR

1/6 0 1/2 0 PS

-4/3 -3/2 -1/2 -3/2 I

-1/3 -1/2 1 0 II

5/12 1/4 -1/2 1/4 III

2/3 1/2 1 0 IV

Table 1: The six possible models of embedding class (i). Both the Pati-Salam model and the

trinification model are of this class.

by identifying the families in the 334 bifundamentals. To start the process, note that in

a standard family there is only one quark doublet, i.e., the (3, 2) 1

6

. Therefore, comparing

with the decomposition of the (4, 3̄, 1) we must have

a − b = 1/6 (3.5)

where we take a, b, c and d to be the coefficients of the unnormalized version of the U(1)

generators Λ15, λL
8 , λR

3 and λR
8 .

There are three sets of (3̄, 1)s, so we can get two more conditions on the coefficients

in the definition of Y by setting one of the three corresponding linear combinations (i.e.,

−a + c + d, −a− c + d, or −a− 2d) equal to the family hypercharge for the (3̄, 1)−2/3 and

another to the hypercharge of the (3̄, 1)1/3. At this stage there is still one free parameter,

but we need to check that sufficient freedom remains to have three (1, 2)−1/2s and three

(1, 1)1s. By setting lepton doublet charges to −1
2 or singlet charges to 1 we find the allowed

solutions summarized in table 1.

Other choices of coefficients correspond to trivial flippings. For instance, there are three

equivalent choices for the overall diagonal generator of SU(3)R that enters Y , and they are

given by (1.) c = −1/2 and d = −1/6, (2.) c = 1/2 and d = −1/6, and (3.) d = 1/3 with

c = 0. (In E6 this type of flipping is nontrivial if the spontaneous symmetry breaking is

such that the states end up in different irreps of the decomposition, e.g., different routes

through SU(5) irreps.) As we mentioned above, the 334 model has nontrivial transflipping

where the family states move about while the charges of the extra states change, and these

are model I through IV in table I. As we already know the content of the TR and PS

models we derived, let us summarize the fermion contents of the new models I through IV.

They are

Case I. The coefficients are

(a, b, c, d) = (−4/3,−3/2,−1/2,−3/2). (3.6)

– 8 –
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They yield a weak hypercharge operator

YI =








−4
3 0 0 0

0 −4
3 0 0

0 0 −4
3 0

0 0 0 4








︸ ︷︷ ︸

SU(4)

+






−3
2 0 0

0 −3
2 0

0 0 3






︸ ︷︷ ︸

SU(3)L

+






−2 0 0

0 −1 0

0 0 3






︸ ︷︷ ︸

SU(3)R

, (3.7)

and fermions

(4, 3̄, 1) → (3, 2)1/6 + (1, 2)11/2 + (3, 1)−13/3 + (1, 1)1 (3.8)

(1, 3, 3̄) → (1, 2)1/2 + (1, 2)−1/2 + (1, 2)−9/2

+(1, 1)5 + (1, 1)4 + (1, 1)0 (3.9)

(4̄, 1, 3) → (3̄, 1)−2/3 + (3̄, 1)1/3 + (3̄, 1)13/3

+(1, 1)−6 + (1, 1)−5 + (1, 1)−1, (3.10)

where we have underlined the locations of members of the standard families.

Case II. Now the coefficients are

(a, b, c, d) = (−1/3,−1/2, 1, 0), (3.11)

yielding

YII =








−1
3 0 0 0

0 −1
3 0 0

0 0 −1
3 0

0 0 0 1








︸ ︷︷ ︸

SU(4)

+






−1
2 0 0

0 −1
2 0

0 0 1






︸ ︷︷ ︸

SU(3)L

+






−1 0 0

0 0 0

0 0 1






︸ ︷︷ ︸

SU(3)R

, (3.12)

and fermions

(4, 3̄, 1) → (3, 2)1/6 + (1, 2)3/2 + (3, 1)−4/3 + (1, 1)0 (3.13)

(1, 3, 3̄) → (1, 2)−3/2 + (1, 2)1/2 + (1, 2)−1/2

+(1, 1)0 + (1, 1)0 + (1, 1)1 (3.14)

(4̄, 1, 3) → (3̄, 1)4/3 + (3̄, 1)−2/3 + (3̄, 1)1/3

+(1, 1)0 + (1, 1)−2 + (1, 1)−1, (3.15)

where we have again underlined the locations of members of the standard families. Note

some of them have changed location from model I and the extra fermions have changed

their locations as well as their charges.

Case III. The coefficients are

(a, b, c, d) = (5/12, 1/4,−1/2, 1/4), (3.16)
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leading to the hypercharge operator

YIII =








5
12 0 0 0

0 5
12 0 0

0 0 5
12 0

0 0 0 −5
4








︸ ︷︷ ︸

SU(4)

+






1
4 0 0

0 1
4 0

0 0 −1
2






︸ ︷︷ ︸

SU(3)L

+






−1
4 0 0

0 3
4 0

0 0 −1
2




 ,

︸ ︷︷ ︸

SU(3)R

(3.17)

and fermions

(4, 3̄, 1) → (3, 2)1/6 + (1, 2)−3/2 + (3, 1)11/12 + (1, 1)−3/4 (3.18)

(1, 3, 3̄) → (1, 2)1/2 + (1, 2)−1/2 + (1, 2)3/4

+(1, 1)−1/4 + (1, 1)−5/4 + (1, 1)0 (3.19)

(4̄, 1, 3) → (3̄, 1)−2/3 + (3̄, 1)1/3 + (3̄, 1)−11/12

+(1, 1)1 + (1, 1)2 + (1, 1)3/4, (3.20)

(3.21)

with the locations of standard family members underlined. Remarkably, except for the

positron, they are in the same places as they were in model II. The charges of the extra

fermions have changes as expected.

Case IV. This time, the coefficients

(a, b, c, d) = (2/3, 1/2, 0, 1) (3.22)

yield

YIV =








2
3 0 0 0

0 2
3 0 0

0 0 2
3 0

0 0 0 −2








︸ ︷︷ ︸

SU(4)

+






1
2 0 0

0 1
2 0

0 0 −1






︸ ︷︷ ︸

SU(3)L

+






0 0 0

0 1 0

0 0 −1




 ,

︸ ︷︷ ︸

SU(3)R

(3.23)

and fermions

(4, 3̄, 1) → (3, 2)1/6 + (1, 2)−/2 + (3, 1)5/3 + (1, 1)−1, (3.24)

(1, 3, 3̄) → (1, 2)−1/2 + (1, 2)1/2 + (1, 2)1/2

+(1, 1)−2 + (1, 1)0 + (1, 1)−1, (3.25)

(4̄, 1, 3) → (3̄, 1)1/3 + (3̄, 1)5/3 + (3̄, 1)−2/3

+(1, 1)3 + (1, 1)1 + (1, 1)2, (3.26)

where the locations of members of the standard families have moved and the extra charges

have changed values once again. In all cases the standard model family is distributed

amongst all three types of initial 334 model bifundamental fermion representations.

As we have seen, embedding SU(3)C in SU(4) (embedding class (i)) can lead to the PS

model, but this is certainly not the case for embedding classes (ii) and (iii). However, the
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ã b̃ c̃ d̃ type

0 1/3 0 -1/6 TR

1/2 1−2x
6

x
3 -1/6 X

Table 2: Class (ii) models.

TR model is allowed by all three embedding classes. We now move on the Class (ii) where

SU(3)C is in an SU(3) of the 334 model and SU(2)W is in the other SU(3). The fermions

decompose as

(4, 3̄, 1) → (3̄, 1)−1−1−10 + (3̄, 1)1−1−10 + (3̄, 1)02−10 + (3̄, 1)0030, (3.27)

(1, 3, 3̄) → (3, 2)000−1 + +(3, 1)000−2, (3.28)

(4̄, 1, 3) → (1, 2)1111 + (1, 1)111−2

+(1, 2)−1111 + (1, 1)−111−2

+(1, 2)0−211 + (1, 1)0−21−2

+(1, 2)00−31 + (1, 1)00−3−2, (3.29)

and the generator of U(1)Y is

Y = ãΛ3 + b̃ΛL
8 + c̃ΛR

15 + d̃λR
8 . (3.30)

We start the process of identifying the families in the 334 bifundamentals by again noting

there is only one type of quark doublet. Therefore, comparing with the decomposition

of the (4, 3̄, 1) we must have d̃ = −1/6. Again requiring the existence of (3̄, 1)s with

hypercharges 1/3 and −2/3 and leptons (1, 2)−1/2 and (1, 1)1 leads to a set of equations

for the coefficients in (43) with solutions summarized in table 2.

As expected the TR model is a solution, however, the “X” model is a surprise. We find

we can satisfy all the conditions necessary to fix the charge of all standard model family

members without the need to specify the value of the parameter x in the hypercharge,

Y =








2
3 0 0 0

0 −1
3 0 0

0 0 x − 1
3 0

0 0 0 −x








︸ ︷︷ ︸

SU(4)

+






−1
6 0 0

0 −1
6 0

0 0 1
3






︸ ︷︷ ︸

SU(3)R

. (3.31)

I.e., the generator X = diag(0, 0, 1,−1) of U(1)X ⊂ SU(4) is still at our disposal. Before
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discussing this model, let us display the fermions:

(4, 3̄, 1) → (3̄, 1)−2/3 + (3̄, 1)1/3 + (3̄, 1)1/3−x + (3̄, 1)x, (3.32)

(1, 3, 3̄) → (3, 2)1/6 + (3, 1)−1/3, (3.33)

(4̄, 1, 3) → (1, 2)1/2 + (1, 1)1

+(1, 2)−1/2 + (1, 1)0

+(1, 2)x−1/2 + (1, 1)x

+(1, 2)−x−1/6 + (1, 1)−x+1/3. (3.34)

We find the three complete standard model families (underlined states) without specifying

x. There are several choices for x that can be used to generate a flipped model. x =

1, 0,−2/3 or 1/3 flip the (3̄, 1)s, x = 0 flips the (1, 2)s, and x = 3/2, 1, 4, 3 or −7/6 flips the

(1, 1)s. The model does not, a priori, require complete charge quantization of the standard

families relative to the extra fermions. In any model where U(1)X is spontaneously broken

by vacuum expectation values for Higgs scalars in a representation of SU(4), electric charge

will end up quantized depending on the charges of that representation. However, it is not

necessary for U(1)X to be spontaneously broken since all of the standard model fields are

neutral under it, turning U(1)X into a hidden sector gauge symmetry.

To see this, define the generator Z by

Z =








2
3 0 0 0

0 −1
3 0 0

0 0 −1
3 0

0 0 0 0








︸ ︷︷ ︸

SU(4)

+






−1
6 0 0

0 −1
6 0

0 0 1
3






︸ ︷︷ ︸

SU(3)R

(3.35)

Then, Y
2 = Z + xX, which means that the subgroup generated by Y is a subgroup of

U(1)Z × U(1)X and that subgroup cannot possibly be U(1)X . If x is a rational number,

then that subgroup is isomorphic to U(1) and we can call it U(1)Y and the hypercharges,

and hence the electric charges are quantized. On the other hand, if x is irrational, then that

subgroup is dense in U(1)Z×U(1)X . Since the model that we are dealing with is continuous

under symmetry transformations, if we have an infinite sequence of gauge transformations

leaving the vacuum [17] invariant that converges to some gauge transformation, then that

gauge transformation also leaves the vacuum invariant. So, if Y is unbroken up to the

electroweak breaking scale, then so is the closure of the subgroup generated by it; U(1)Z ×
U(1)X is also unbroken right up to the electroweak scale. The electric charge operator is

Q = Y
2 + I

2 , where I is the weak isospin operator. Let us define V = Z + I
2 , such that

Q = V + xX. Since the electromagnetic symmetry is unbroken, by the same reasoning,

this also means that U(1)V × U(1)X is also unbroken. Nothing in this discussion depends

upon the details of the symmetry breaking (Higgs or dynamical).

However, there will be cross-coupling terms for the gauge kinetic terms. Let AZ be

the gauge field for U(1)Z and AX be the gauge field for U(1)X , with FZ and FX their
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respective field strengths. The gauge kinetic term will have the generic form

− 1

4g2
Z

Fµν
Z FZµν − 1

4g2
Y

Fµν
X FXµν − α

2
Fµν

Z FXµν (3.36)

where α is some dimensionless coefficient that receives contributions from radiative correc-

tions.

By taking linear combinations X and Y ′ = Z + βX, we can diagonalize the gauge

kinetic terms with a proper choice of β, but in that case, the Y ′ charges of SM fields and

the exotic fields will be incommensurable. Since all the SM fields are neutral under X, AX

decouples from the low energy physics and so, it is not a problem that it remains unbroken.

However, it is essential that all exotics with a nonzero X charge have large mass, since they

couple to both the standard model gauge fields and AX . This probably means that our

current model does not work phenomenologically because, so far we have not been able

to find a way to make all the exotic fermions vectorlike. However, this mechanism works

generically for any GUT theory which contains U(1)Z ×U(1)X with all the standard model

fields being X-neutral and the Z charges of all the standard model fields coinciding with

their hypercharges.

We are now ready to continue on to class (iii) models where SU(2) is embedded in

SU(4). We can write the hypercharge operator as

Y = âΛ8′ + b̂Λ15′ + ĉλR
3 + d̂λR

8 , (3.37)

where we define Λ8′ = diag(1, 1,−1,−1) and Λ15′ = diag(0, 0, 1,−1). The fermions now

decompose as (writing the representations in the order (SU(3)C ,SU(2)W ) to agree with the

previous notation)

(4̄, 1, 3) → (3, 2)−1000 + (3, 1)1−100 + (3, 1)1100 . (3.38)

(1, 3, 3̄) → (3̄, 1)0011 + (3̄, 1)00−11 + (3̄, 1)000−2. (3.39)

(4, 3̄, 1) → (1, 2)10−1−1 + (1, 2)101−1 + (1, 2)1002

+(1, 1)−11−1−1 + (1, 1)−111−1 + (1, 1)−110−2

+(1, 1)−1−1−1−1 + (1, 1)−1−11−1 + (1, 1)−1−102. (3.40)

The usual process of requiring the quark doublets to have hypercharge 1
6 , the (3̄, 1)s

have hypercharges 1/3 and −2/3 and leptons (1, 2)−1/2 and (1, 1)1 leads to two inequivalent

models where the hypercharge operator is either

YTR =








−1
6 0 0 0

0 −1
6 0 0

0 0 1
3 0

0 0 0 0








︸ ︷︷ ︸

SU(4)

+






−2
3 0 0

0 1
3 0

0 0 1
3






︸ ︷︷ ︸

SU(3)R

(3.41)
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â b̂ ĉ d̂ type

-1/6 1/6 1/2 -1/6 TR

-1/6 7/6 0 1/3 V

Table 3: Class (iii) models.

or

YV =








−1
6 0 0 0

0 −1
6 0 0

0 0 4
3 0

0 0 0 −1








︸ ︷︷ ︸

SU(4)

+






1
3 0 0

0 1
3 0

0 0 −2
3






︸ ︷︷ ︸

SU(3)R

. (3.42)

Tabulating the coefficients we have table 3.

As the first case is the TR model again we need only consider the second. Here the

fermions are

(4̄, 1, 3) → (3, 2)1/6 + (3, 1)−4/3 + (3, 1)1. (3.43)

(1, 3, 3̄) → (3̄, 1)1/3 + (3̄, 1)1/3 + (3̄, 1)−2/3. (3.44)

(4, 3̄, 1) → (1, 2)−1/2 + (1, 2)−1/2 + (1, 2)1/2

+(1, 1)−2/3 + (1, 1)−2/3 + (1, 1)1

+(1, 1)−1/3 + (1, 1)−1/3 + (1, 1)2/3. (3.45)

Multiple choices for selecting family components exist here of which we have underlined

one possibility.

4. The Higgs sector

In this section, we will present a detailed analysis of the Higgs sector for the cases where the

intermediate gauge group is the 422 (PS) group, the flipped 422 group and the trinification

group.

5. Pati-Salam models

Consider the symmetry breaking chain

SU(4) × SU(3)A × SU(3)B → SU(4) × SU(2)L × SU(2)R

→ SU(3)C × U(1)Y
Z3

× SU(2)W ,

which takes us from the 334 model to the standard model via the PS model, where we take

SU(2)W = SU(2)L ⊂ SU(3)A,

SU(2)R ⊂ SU(3)B ,
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and

SU(3)C ⊂ SU(4).

The weak hypercharge in this model is

YPS =








1
6 0 0 0

0 1
6 0 0

0 0 1
6 0

0 0 0 −1
2








︸ ︷︷ ︸

SU(4)

+

(
1
2 0

0 −1
2

)

︸ ︷︷ ︸

SU(2)R

=








1
6 0 0 0

0 1
6 0 0

0 0 1
6 0

0 0 0 −1
2








︸ ︷︷ ︸

SU(4)

+






1
2 0 0

0 0 0

0 0 −1
2






︸ ︷︷ ︸

SU(3)B

,

and is of PS type.

The fact that the SM gauge group is modded out by Z3 instead of the usual Z6 [18]

means that we can have electric charges which are multiples of 1
2 . At distances smaller

than the QCD confinement scale, we can also have electric charges which are multiples of
1
6 , but at larger distances, we only find electric charges coming in multiples of 1

2 . However,

these fractional charges are attached to particles with GUT scale1 masses. Monopoles form

at the PS breaking scale.

5.1 Model PSα

5.1.1 Fermion content

The fermion content at the 334 level is 3[(4, 3̄, 1)433 ⊕ (4̄, 1, 3)433 ⊕ (1, 3, 3̄)433 ⊕ (1, 3, 1)433 ⊕
(1, 1, 3̄)433] [19] with decomposition of the representations under the PS group given by

(4, 3̄, 1)433 → (4, 2, 1)PS ⊕ (4, 1, 1)PS,

(4̄, 1, 3)433 → (4̄, 1, 2)PS ⊕ (4̄, 1, 1)PS,

(1, 3, 3̄)433 → (1, 2, 2)PS ⊕ (1, 2, 1)PS ⊕ (1, 1, 2)PS ⊕ (1, 1, 1)PS,

(1, 3, 1)433 → (1, 2, 1)PS ⊕ (1, 1, 1)PS,

(1, 1, 3̄)433 → (1, 1, 2)PS ⊕ (1, 1, 1)PS,

We find the SM fermions (plus a left handed antineutrino) are contained within (4, 2, 1)PS

and (4̄, 1, 2)PS. All the other fermions are “exotic” and must be heavy enough to have

escaped detection.

5.1.2 Yukawa couplings

Our goal is to make the exotic fermions vectorlike. In general, this can be done either at

the 433 breaking scale or at the PS breaking scale. Since all the PS representations of the

fermion fields other than the Standard Model + left handed antineutrino either come in

conjugate pairs or are real representations, it is much more economical to arrange for all

the pairings to occur at the 433 breaking scale. Here, we assume that the pairings result

1The GUT scale is defined to be the energy scale at which the GUT gauge symmetry is spontaneously

broken.
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from Yukawa terms after the Higgs field(s) acquire VEVs. Pairings are also possible using

nonrenormalizable couplings [20] or other means like dynamical symmetry breaking.

Pairing (4, 1, 1)PS with (4̄, 1, 1)PS requires either 〈(15, 3, 3̄)H433〉 [21] or 〈(1, 3, 3̄)〉H433.

The choice of 15SU(4) and 1SU(4) comes about because they are the only two SU(4)-

representations ρ for which there exists a nonzero intertwiner2 from ρ ⊗ 4SU(4) ⊗ 4̄SU(4)

to the singlet representation where the interaction terms are gauge invariant. The VEV

lies along the (1, 1, 1)HPS component of the Higgs field. The second choice is simpler, but

the first choice works just as well, at least when it comes to Yukawa couplings. However,

as we will see later, a (1, 3, 3̄)H433 Higgs is necessary for other reasons. So, the first choice

may be an unnecessary complication. In summary, we choose either

〈1, 3, 3̄〉H433(4, 3̄, 1)433(4̄, 1, 3)433,

or

〈15, 3, 3̄〉H433(4, 3̄, 1)433(4̄, 1, 3)433.

(1, 2, 2)PS is real and the only (1, 2, 2)PS’s come from (1, 3, 3̄)433. So, the pairing has to be

Majorana. Hence,

〈(1, 3, 3̄)H433〉(1, 3, 3̄)433(1, 3, 3̄)433

is the only choice [22].

Now let’s move on to the (1, 2, 1)PS fermions. Neither

〈(1, 3, 6)H433〉(1, 3, 3̄)433(1, 3, 3̄)433

nor

〈(1, 3, 1)H433〉(1, 3, 1)433(1, 3, 1)433
are satisfactory because they lead to antisymmetric mass self-couplings of the fermion fields

and with three generations, this still leaves us with some leftover massless fermions. Even if

we have more than one such Higgs field with different Yukawa coupling constants between

the generations, we are still left with massless fermions since the sum of two antisymmetric

matrices is still an antisymmetric matrix which has a zero eigenvalue if its dimension is

odd. It is not that we cannot add such couplings but that with such couplings, we still need

to add the other Yukawa couplings to pair up all the exotics anyway and so, the addition

of such couplings is an unnecessary complication, unless they are required to provide useful

mass relations. This leaves us with the choices that avoid asymmetric mass matrices, i.e.,

we require

〈(1, 3, 3)〉H433(1, 3, 3̄)433(1, 3, 1)433

to give masses to the (1, 2, 1)PS fermions. Similarly, for the (1, 1, 2)PS fermions, we need

the coupling

〈(1, 3̄, 3̄)〉H433(1, 3, 3̄)433(1, 1, 3̄)433.

Finally, we are left to deal with the (1, 1, 1)PS fermions. They leave us with the greatest

degree of freedom. However, since they do not couple to the PS gauge fields, (and as a

2An intertwiner is a 433-invariant linear map from a representation into another.
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consequence the SM gauge fields), and as all the SM fermions are located within (4, 3̄, 1)433
and (4̄, 1, 3)433 and as these singlets are located within the SU(4)-neutral representations,

we have not added a single Yukawa coupling which mixes the SU(4)-charged fermions with

the SU(4)-neutral fermions, it is unnecessary to pair them up.

Note that all of the Higgs fields introduced previously with the possible exception of

the optional (15, 3, 3̄)H433 are SU(4)-singlets. This means that we need additional Higgs

fields which are not SU(4)-singlets to break PS down to SM. These Higgs fields will acquire

VEVs at a lower energy scale compared to the SU(4)-neutral Higgs fields.

Since the electroweak doublets couple some SM components of (4, 3̄, 1)433 to some SM

components of (4̄, 1, 3)433, they have to lie in either (15, 3, 3̄)H433 or (1, 3, 3̄)H433 or some

linear combination. As (15, 3, 3̄)H433 is not really needed, the second choice is the simplest

one. (We still need to break SU(4) to SU(3)×U(1), and the most efficient choice for this is

(15, 1, 1)H433 .) If only one (1, 3, 3̄)H433 field exists, this will lead to mass relations between

the up-type and down-type quarks which are not observed. So, there has to be at least

two such fields.

In a full phenomenological model, we will have to make sure that all the Higgs fields

pair up except for the electroweak doublets (unless there is some mechanism making the

additional Higgs fields phenomenologically harmless) with the possible exception of some

SM-singlet Higgs fields (or even electroweak triplets, but then we might have to worry

about protecting the tiny mass of the left-handed neutrino), but we will not work this out

here. Higgs fields with SU(3)C -color are likely to cause rapid proton decay.

Lastly, the left-handed antineutrino has to acquire a Majorana mass. There are number

of ways to do this. For instance,

〈(10, 1, 6̄)H433〉(4̄, 1, 3)433(4̄, 1, 3)433

is one of them. A Yukawa coupling with a Higgs VEV associated with the PS breaking

scale of the left-handed antineutrino to one of the vector exotics which already has a mass

associated with the 433 breaking scale is another. Or we can even add singlet fermion

fields (1, 1, 1)433 and pair up the left-handed antineutrino with it. Any of these methods

will lead to a small seesaw mass for the left-handed neutrino.

5.2 Model PSβ

5.2.1 Fermion content

Now consider the 334 model with pure bifundamental fermions, 3(4, 3̄, 1)433⊕3(4̄, 1, 3)433⊕
4(1, 3, 3̄)433 and therefore family unification. These fermions decompose via

(4, 3̄, 1)433 → (4, 2, 1)PS ⊕ (4, 1, 1)PS ,

(4̄, 1, 3)433 → (4̄, 1, 2)PS ⊕ (4̄, 1, 1)PS,

and

(1, 3, 3̄)433 → (1, 2, 2)PS ⊕ (1, 2, 1)PS ⊕ (1, 1, 2)PS ⊕ (1, 1, 1)PS.
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5.2.2 Yukawa couplings

The symmetry breaking can be analysed by using the same reasoning as in the previous

model, where we choose either

〈(1, 3, 3̄)H433〉(4, 3̄, 1)433(4̄, 1, 3)433,

or

〈(15, 3, 3̄)H433〉(4, 3̄, 1)433(4̄, 1, 3)433,

to give masses to the (4, 1, 1)PS and (4̄, 1, 1)PS. The rest of the Yukawa terms are determined

(after making the same assumptions as previously discussed) to be

〈(1, 3, 3̄)H433〉(1, 3, 3̄)433(1, 3, 3̄)433,

〈(1, 3, 6)H433〉(1, 3, 3̄)433(1, 3, 3̄)433,

〈(1, 6̄, 3̄)H433〉(1, 3, 3̄)433(1, 3, 3̄)433.

The fact that two of the couplings lead to antisymmetric mass matrices is no problem here

since there are four (1, 3, 3̄)s and as before, we do not need to pair up (1, 1, 1)PS.

The comment that additional Higgs fields are needed to break the PS gauge group also

applies here. So do the comments about the electroweak Higgs doublets and giving the left-

handed antineutrino a large Majorana mass. For instance, if we avoid the 〈(15, 3, 3̄)H433〉
above, then we need to include a 〈(15, 1, 1)H433〉 to break SU(4).

6. Model FPSa

The symmetry breaking chain is [23]

SU(4) × SU(3)A × SU(3)B → SU(4) × SU(2)L × SU(2)R × U(1)X
Z2

→ SU(3)C × U(1)Y
Z3

× SU(2)W ,

where

SU(2)W = SU(2)L ⊂ SU(3)A,

SU(2)R ⊂ SU(3)B ,

and

SU(3)C ⊂ SU(4).

Defining the generator

Z =






1 0 0

0 1 0

0 0 −2






︸ ︷︷ ︸

SU(3)B
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we can write the hypercharge in the form

Y =








1
6 0 0 0

0 1
6 0 0

0 0 1
6 0

0 0 0 −1
2








︸ ︷︷ ︸

SU(4)

+

(
1
4 0

0 −1
4

)

︸ ︷︷ ︸

SU(2)R

+
Z

4
=








1
6 0 0 0

0 1
6 0 0

0 0 1
6 0

0 0 0 −1
2








︸ ︷︷ ︸

SU(4)

+






1
2 0 0

0 0 0

0 0 −1
2






︸ ︷︷ ︸

SU(3)B

The embedding of the SM gauge group within 433 is the same as in the unflipped

PS model (which means that they are the same type of model in our classification). The

matter sector, the Higgs sector, and the Yukawa couplings are also the same. The difference

lies in the relative values of the different Higgs VEVs, which determines the intermediate

gauge group. This is not unlike the case of some SO(10) models, for example, where

despite having the same matter and Higgs sectors and Yukawa couplings, the intermediate

gauge group may be 622 or SU(5), depending upon the relative scale of 〈54H SO(10)〉 and

〈16H SO(10)〉/〈16H SO(10)〉.
At distances smaller than the QCD confinement scale, we can again have electric

charges which are multiples of 1
6 , but at larger distances, we only find electric charges in

multiples of 1
2 . However, these fractional charges are for particles with GUT scale masses.

Again, monopoles form at the 433 breaking scale.

6.1 Model FPSaα

Again we must consider fermions with family replication

3[(4, 3̄, 1)433 ⊕ (4̄, 1, 3)433 ⊕ (1, 3, 3̄)433 ⊕ (1, 3, 1)433 ⊕ (1, 1, 3̄)433],

with decompositions

(4, 3̄, 1)433 → (4, 2, 1)0FPSA ⊕ (4, 1, 1)0FPSA,

(4̄, 1, 3)433 → (4̄, 1, 2)1FPSA ⊕ (4̄, 1, 1)−2FPSA,

(1, 3, 3̄)433 → (1, 2, 2)−1FPSA ⊕ (1, 2, 1)2FPSA ⊕ (1, 1, 2)−1FPSA ⊕ (1, 1, 1)2FPSA,

(1, 3, 1)433 → (1, 2, 1)0FPSA ⊕ (1, 1, 1)0FPSA,

and

(1, 1, 3̄)433 → (1, 1, 2)−1FPSA ⊕ (1, 1, 1)2FPSA,

where we use the following array for definitions

(4, 2, 1)0FPSA (4̄, 1, 2)1FPSA (4, 1, 1)0FPSA (4̄, 1, 1)−2FPSA

(

(3, 2) 1

6

q

(1, 2)− 1

2

l

)









(3̄, 1) 1

3

dc

(3̄, 1)− 1

6

(1, 1)1 ec

(1, 1) 1

2









(

(3, 1) 1

6

(1, 1)− 1

2

) (

(3̄, 1)− 2

3

uc

(1, 1)0 νc

)

The SM fermions are flipped, which is why this model is called a flipped PS model. Both

(4, 1, 2)1FPSA and (4̄, 1, 1)0FPSA contain additional exotics.
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6.1.1 Yukawa couplings

Now either

〈(1, 3, 3̄)H433〉(4, 3̄, 1)433(4̄, 1, 3)433

or

〈(15, 3, 3̄)H433〉(4, 3̄, 1)433(4̄, 1, 3)433

is necessary to begin to carry out the SSB in this model. The former Higgs fields decompose

as

(1, 3, 3̄)H433 → (1, 2, 2)−1HFPSA ⊕ (1, 2, 1)2HFPSA ⊕ (1, 1, 2)−1HFPSA ⊕ (1, 1, 1)2HFPSA,

which makes it clear that its VEVs are at the FPSA breaking scale, since none of its

components are FPSA-singlets.

The Yukawa coupling responsible for pairing of exotics is

〈(1, 1, 2)−1HFPSA〉(4, 1, 1)0FPSA(4̄, 1, 2)1FPSA

None of the other Yukawa terms lead to further pairings until the electroweak

breaking scale. The down-type and up-type electroweak Higgs doublets are

contained within (1, 2, 2)−1HFPSA and (1, 2, 1)2HFPSA respectively. The term

(1, 2, 2)−1HFPSA(4, 2, 1)0FPSA(4̄, 1, 2)1FPSA contains (1, 2)− 1

2
Hqdc and (1, 2)− 1

2
H lec, while

(1, 2, 1)2HFPSA(4, 2, 1)0FPSA(4̄, 1, 1)−2FPSA contains (1, 2) 1

2
Hquc and (1, 2) 1

2
H lνc.

The decompositions of the other fermions are displayed below:

(1, 3, 3̄)433 (1, 3, 1)433 (1, 1, 3̄)433





(1, 2)− 1

2

(1, 1)− 1

2

(1, 2)0 (1, 1)0
(1, 2) 1

2

(1, 1) 1

2






(

(1, 2)0 (1, 1)0

)






(1, 1)− 1

2

(1, 1)0
(1, 1) 1

2






.

The (1, 2) 1

2

of (1, 3, 3̄)433 has to pair up with the (1, 2)− 1

2

of (1, 3, 3̄)433. This is done using

the coupling

〈(1, 3, 3̄)H433〉(1, 3, 3̄)433(1, 3, 3̄)433.

Since there are three generations of (1, 3, 3̄)433 and the self-pairing of (1, 2)0 is anti-

symmetric since it is a pseudoreal representation, we have to pair the (1, 2)0 of (1, 3, 3̄)433
with the (1, 2)0 of (1, 3, 1)433 . So, the coupling

〈(1, 3, 3)H433〉(1, 3, 3̄)433(1, 3, 1)433

is required.

To pair up (1, 1) 1

2

and (1, 1)− 1

2

, the following two couplings are unnecessary

〈(1, 6̄, 3̄)H433〉(1, 3, 3̄)433(1, 3, 3̄)433

〈(1, 1, 3̄)H433〉(1, 1, 3̄)433(1, 1, 3̄)433

for the same reason of antisymmetry and an odd number of generations.
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Finally, we are left with the choice

〈(1, 3̄, 3̄)H433〉(1, 3, 3̄)433(1, 1, 3̄)433.

There is no reason to pair up the SM-singlet fermions here either, so we are left with the

same four Yukawa coupling terms as in the previous model.

Since SU(4) must be broken, there have to be Higgs fields which transform under

SU(4) nontrivially and acquire VEVs at the FPSA breaking scale. Unless there is some

principle (symmetry or otherwise) [24] or some dynamical mechanism preventing us, we

might expect to have Yukawa (or nonrenormalizable) couplings involving this Higgs field,

a SU(4)-charged fermion field and an SU(4)-neutral fermion field. An example is

〈(4̄, 1, 3)H433〉(4, 3̄, 1)433(1, 3, 3̄)433.

This can cause some further flipping so that the standard model fermions are really lin-

ear combinations of some components of (4, 3̄, 1)433 and some components of (1, 3, 3̄)433.

This modifies the electroweak Yukawa couplings so that we might get away with only one

(1, 3, 3̄)H433 Higgs field, instead of two, and still get the right mass relations among the

fermions. But in that case, we definitely need to pair up all the SM-singlet fermions or

otherwise, there will be observable mixings. This is unlike the case of the unflipped PS

model, because the leptons in the (1, 3, 3̄)433 (and also (1, 3, 1)433 and (1, 1, 3̄)433 in some

models) acquire 433 breaking scale masses and a PS scale cross-coupling between (4, 3̄, 1)433
or (4̄, 1, 3)433 with (1, 3, 3̄)433 will only change the SM lepton eigenstates by a tiny angle.

6.2 Model FPSaβ

This construction is similar to the previous model, so we shall not go through the details

here.

7. Model FPSb

Next consider the symmetry breaking chain

SU(4) × SU(3)A × SU(3)B → SU(4) × SU(2)L × SU(2)R × U(1)X
Z2

→ SU(3)C × U(1)Y
Z3

× SU(2)W ,

where

SU(2)L ⊂ SU(3)A,

and

SU(2)R ⊂ SU(3)B .

If we let

U =






−2 0 0

0 1 0

0 0 1






︸ ︷︷ ︸

SU(3)B

,

– 21 –



J
H
E
P
0
1
(
2
0
0
7
)
0
8
8

be the generator of U(1)X , then we can write the hypercharge as

Y =








1
6 0 0 0

0 1
6 0 0

0 0 1
6 0

0 0 0 −1
2








︸ ︷︷ ︸

SU(4)

+

(
1
4 0

0 −1
4

)

︸ ︷︷ ︸

SU(2)R

−U

4
=








1
6 0 0 0

0 1
6 0 0

0 0 1
6 0

0 0 0 −1
2








︸ ︷︷ ︸

SU(4)

+






1
2 0 0

0 0 0

0 0 −1
2






︸ ︷︷ ︸

SU(3)B

.

This model has similarities with the previous models (both flipped I and flipped II), but

the embedding of the intermediate group is different, so the difference between this model

and the previous two models lies in the relative scale of the Higgs VEVs.

The relevant differences lie in the nontrivial SU(4) irreducible representations displayed

below:
(4, 2, 1)0FPSB (4̄, 1, 2)1FPSB (4, 1, 1)0FPSB (4̄, 1, 1)−2FPSB

(

(3, 2) 1

6

q

(1, 2)− 1

2

l

)









(3̄, 1)− 1

6

(3̄, 1)− 2

3

uc

(1, 1) 1

2

(1, 1)0 νc









(

(3, 1) 1

6

(1, 1)− 1

2

) (

(3̄, 1) 1

3

dc

(1, 1)1 ec

)

The up-type electroweak Higgs doublet is contained within (1, 2, 2)−1HFPSB and the down-

type Higgs within (1, 2, 1)2FPSB , which is the reverse of the case with FPSA.

7.1 Direct breaking

It is also certainly possible that all the GUT Higgs VEVs have the same order of magnitude.

In that case, it is more appropriate to say that 433 breaks down directly to the SM gauge

group.

8. Trinification

Finally, we return to the trinification case where we will explore the variant of the model

with SSB

SU(4) × SU(3)A × SU(3)B → SU(3)C × SU(3)L × SU(3)R

→ SU(3)C × SU(2)W × U(1)Y
Z2

.

The Z2 modding means that the electric charge is quantized in multiples of 1/3 [25].

Monopoles form at the TR breaking scale. We choose the fermion content

3[(4, 3̄, 1) ⊕ (4̄, 1, 3) ⊕ (1, 3, 3̄) ⊕ (1, 3, 1) ⊕ (1, 1, 3̄)].

8.1 Model TRa

The first model has

SU(3)C ⊂ SU(4),

SU(2)W ⊂ SU(3)L = SU(3)A,
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and

SU(3)R = SU(3)B ,

with hypercharge

YTRa =






−1
6 0 0

0 −1
6 0

0 0 1
3






︸ ︷︷ ︸

SU(3)A

+






1
3 0 0

0 1
3 0

0 0 −2
3






︸ ︷︷ ︸

SU(3)B

.

The decompositions of the representations under TR are

(4, 3̄, 1)433 → (3, 3̄, 1)TR ⊕ (1, 3̄, 1)TR,

(4̄, 1, 3)433 → (3̄, 1, 3)TR ⊕ (1, 1, 3)TR,

(1, 3, 3̄)433 → (1, 3, 3̄)TR,

(1, 3, 1)433 → (1, 3, 1)TR,

and

(1, 1, 3̄)433 → (1, 1, 3̄)TR.

8.1.1 Yukawa couplings

The fractionally charged fermions are located within the TR-fundamental fermions fields

but not the TR-bifundamental fermions fields. So, we have to pair up the TR-fundamentals

with TR-fundamentals. This can be done with a 433 breaking term

〈(4̄, 1, 1)H433〉(4, 3̄, 1)433(1, 3, 1)433

which takes care of (1, 3̄, 1)TR and (1, 3, 1)TR. If we wish to be exhaustive, we should not

overlook the possibility of using a VEV for an SU(3)A-octet

〈(4̄, 8, 1)H433〉(4, 3̄, 1)433(1, 3, 1)433.

This Higgs field can only acquire a VEV at the TR breaking scale, with the corresponding

pairing

〈(1, 8, 1)HTR〉(1, 3̄, 1)TR(1, 3, 1)TR,

which gives a different mass relation between the exotic fermions from the previous choice.

Similarly, we can have either

〈(4, 1, 1)H433〉(4̄, 1, 3)433(1, 1, 3̄)433,

or

〈(4, 1, 8)H433〉(4̄, 1, 3)433(1, 1, 3̄)433

with a different mass relation in each case.
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In trinification, we need more than one (1, 3, 3̄)HTR Higgs field. The other Yukawa

couplings terms are

〈(1, 3, 3̄)H433〉(4, 3̄, 1)433(4̄, 1, 3)433,

( (15, 3, 3̄)H433 is also possible, but unnecessary since we already have (1, 3, 3̄)H433’s), and

〈(1, 3, 3̄)H433〉(1, 3, 3̄)433(1, 3, 3̄)433.

This is the only choice which pairs up the exotic leptons. However, it does not cause the

SM-neutral fermions to pair up [26]. A (1, 6̄, 3̄)H433 leads to antisymmetric mass matrix,

but a (1, 6̄, 6)H433 can be responsible for giving large symmetric masses to the remaining

exotics.

8.2 Model TRb

Our second trinification model has

SU(3)C = SU(3)A,

SU(2)W ⊂ SU(3)L = SU(3)B ,

and

SU(3)R ⊂ SU(4),

with hypercharge

YTRb =








1
3 0 0 0

0 1
3 0 0

0 0 −2
3 0

0 0 0 0








︸ ︷︷ ︸

SU(4)

+






−1
6 0 0

0 −1
6 0

0 0 1
3






︸ ︷︷ ︸

SU(3)B

.

8.2.1 Yukawa couplings

The appropriate Yukawa couplings terms are

〈(4̄, 1, 1)H433〉(4, 3̄, 1)433(1, 3, 1)433,

〈(4, 1, 1)H433〉(4̄, 1, 3)433(1, 1, 3̄)433,

〈(4̄, 1, 3)H433〉(4, 3̄, 1)433(1, 3, 3̄)433,

〈(6, 1, 3)H433〉(4̄, 1, 3)433(4̄, 1, 3)433.

As before, the SM-singlet fermions may be paired using a term of the form

〈(10, 1, 6̄)H433〉(4̄, 1, 3)433(4̄, 1, 3)433.

8.3 Model TRb’

The third model has some similarities with Model TRa. Here we have

SU(3)C = SU(3)B ,

SU(2)W ⊂ SU(3)L ⊂ SU(4),
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and

SU(3)R = SU(3)A,

with hypercharge

YTRb′ =








−1
6 0 0 0

0 −1
6 0 0

0 0 1
3 0

0 0 0 0








︸ ︷︷ ︸

SU(4)

+






1
3 0 0

0 1
3 0

0 0 −2
3






︸ ︷︷ ︸

SU(3)A

.

8.3.1 Yukawa couplings

The necessary Yukawa couplings terms are

〈(4̄, 1, 1)H433〉(4, 3̄, 1)433(1, 3, 1)433,

〈(4, 1, 1)H433〉(4̄, 1, 3)433(1, 1, 3̄)433,

〈(4, 3̄, 1)H433〉(4̄, 1, 3)433(1, 3, 3̄)433,

〈(6, 3̄, 1)H433〉(4, 3̄, 1)433(4, 3̄, 1)433,

and the SM-singlet fermions may be paired up via

〈(10, 6, 1)H433〉(4, 3̄, 1)433(4, 3̄, 1)433.

For the remaining models in our classification, we have not been able to find a suitable

choice of additional “exotic” fermion fields to add to make all the exotic fermions vectorlike

at the GUT scale. While this certainly does not mean that such a combination is not

possible, it probably means that any such combination would have to be fairly complicated.

9. Discussion

Perhaps the most unusual and interesting new models found here are those where some

of the extra fermions have X charges. We can generate other models similar to the X

model by extending the gauge group of the PS or TR model. To see this let one of

the SU(N)s be extended to SU(N + 2) in a way that the families have no charge under

the new diagonal generator X ′ = diag(0, 0, . . . 0, 1,−1) of SU(N + 2). For example, let

GTR be replaced by SU(3)×SU(3)×SU(5), where we then break this symmetry to GTR×
U(1)X′ . Then the TR fermions which must be extended to

5(3, 3̄, 1) + 3(1, 3, 5̄) + 3(5̄, 1, 3) (9.1)

under GTR → SU(3) × SU(3) × SU(5), reduce to

5(3, 3̄, 1)0+3(1, 3, 3̄)0+3(3̄, 1, 3)0+(1, 3, 1)x′ +(3̄, 1, 1)x′ +(1, 3, 1)−x′ +(3̄, 1, 1)−x′ . (9.2)

This model has some interest in its own right since family unification is required if we only

allow bifundamentals (However, problems can arise in this model with respect to giving

heavy masses to the exotics.). As planned, the three families have no X ′ charge. Therefore,
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the breaking of U(1)X′ is not tied to the charge operator for standard families, nor is the

X ′ charge a priori quantized for the extra fermions. The X model itself is somewhat more

interesting since it is not one of these extensions. U(1)X is an integral part of the 334

model and is interwoven into SU(4)× SU(3)× SU(3) in a nonfactorizable way. As we have

seen, there are a number of choices for x that can be used to flip the X model. Likewise,

this can be done for X ′ models.

The spontaneous symmetry breaking of SU(4)×SU(3)×SU(3) to models that contain

the TR or PS model is straightforward. A Higgs multiplet (4, 1, 1)H + h.c. can be used to

break directly to the SU3(3) of the TR model. Further breaking proceeds as in the TR

model. Likewise a (1, 3, 1)H + h.c. and a (1, 1, 3)H + h.c. can be used to break SU(4) ×
SU(3)×SU(3) to the PS group SU(4)×SU(2)×SU(2). Further breaking proceeds as in the

PS model. Hence, we only need to concern ourselves with the 334 that is not equivalent to

the TR or PS models. The SSB to any of the models listed can always be achieved, given

sufficient freedom in the Higgs sector. It would be interesting if we could derive any of the

334 type models from an orbifolded AdS/CFT theory, as this would strongly restrict both

the fermion and scalar content of the theory, i.e., adjoints and bifundamentals only.

In the PS and TR models, several symmetry breaking scales can be associated with

magnetic monopoles. In this context it is important that the gauge boson mediated proton

decay is absent in these models, but proton decay can still proceed through Higgs (Higgsino

if the model is supersymmetrized) exchange, as well as via higher dimension operators. It is

relatively straightforward to construct models based on GPS and GTR where proton decay

is forbidden, as a consequence, say of an ‘accidental’ baryon number symmetry. This allows

the possibility that GPS and GTR could be broken at scales far below the conventional grand

unification scale MGUT ∼ 1016GeV . An example based on D-branes in Type I string theory

was provided for the GPS symmetry [27], where with the standard embedding of SU(3)C ×
SU(2) ×U(1), the symmetry breaking scale of GPS becomes MPS ∼ 1012 − 1013 GeV, with

the corresponding string scale >∼ MPS. Thus, monopoles with mass ∼ 1013 − 1014 GeV

are expected in this class of models. An even more suggestive result is given by the

PS type model based on CFT obtained from orbifolded type IIB strings [28, 29]. Here

the unification is in the 100 TeV range, and other intriguing phenomenology possibilities

appear, e.g., sin2θW can be approximately .23, etc. [30]. Analogous considerations should

apply to the trinification scheme and, by extension, to the gauge symmetry of special

interest here SU(4) × SU(3) × SU(3). Assuming for instance that a 334 model could be

derived from an orbifolded AdS × S5, the multiply charged monopoles of the theory will

have mass as small as M ∼ 107 GeV, which is in the preferred range of interest if they

are to be candidates for high energy cosmic ray primaries [31, 32]; a more detailed study

of mass scales would require an RG analysis for each model. We expect the 334-model to

have a similar unification scale with resulting exotic (fractionally charged) leptons and/or

hadrons, and we expect their masses to be near this unification scale, so they are also of

interest as dark matter candidates [33, 34].

Given that monopoles of mass of order ∼ 1013 − 1014 GeV (or perhaps even much

lighter) can arise in realistic models, it is important to ask: Can these primordial monopoles

survive inflation? A non-supersymmetric inflationary scenario which dilutes but does not
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completely wash away intermediate mass monopoles was developed in ref [35]. The D-

brane scenario discussed above gives rise to non-supersymmetric SU(4)C × SU(2)× SU(2),

so the discussion in ref [35] may be relevant. The monopole flux can be reduced to close

to the Parker bound 10−16cm−2s−1sr−1. In the orbifolded scheme, the SSB scale where

the monopoles get their masses can be below the inflation scale. Hence, the monopoles

can exist in interesting densities (near the Parker bound) depending on details of the SSB

phase transitions. For the supersymmetric case, dilution of monopoles can be achieved

by thermal inflation [36, 37] followed by entropy production. A scenario in which thermal

inflation is associated with the breaking of the U(1) axion symmetry was recently developed

in ref [38]. Current experimental limits on the relativistic monopole flux in cosmic rays have

been pushed below the Parker bound [39 – 42], while direct searches have also constrained

the monopole mass and cross section [44, 43]. See also the discussion in [45].

In summary, the SU(4)× SU(3) × SU(3) models we are advocating provides a natural

family unification while avoiding proton decay and giving rise to both (exotic) fractionally

charged color singlets and corresponding multiply charged magnetic monopoles [46] with

densities compatible with the Parker bound, and with masses perhaps as light as ∼ 107 GeV,

(Note that in SU(5) the lightest monopole has mass of ∼ 1017 GeV, and carries one unit of

magnetic charge [47].) The exotic states are heavy (greater than a few TeV), but may be

in the range explored by accelerators in the next decade.
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